

Predict – Prepare – Prevent – Detect

PARADIGM SHIFT IN INFORMATION SECURITY AND PRIVACY WITH ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Dragan Pleskonjic

INPRESEC INITIATOR / FOUNDER

- Rich experience in creating and managing start-ups, new businesses development
- Leading management positions in international corporations
- Expertise in information security, computer software and networks industry
- Prolific academic career: Adjunct Professorship, authorship of books, scientific papers and journals' articles
- Scientific and security leader, researcher, advisor, architect
- Inventor with a set of U.S. patents granted and several • patent applications pending (USPTO, CIPO, EPO, WIPO)
 - Entrepreneur, leader, motivator, visionary

Information Security

 Information security is complicated, and hard to get right. I'm an expert in the field, and it's hard for me. It's hard for the director of the CIA. And it's hard for you.

- Bruce Schneier, called a "security guru" by The Economist

• Machine learning plays a part in every stage of your life.

Pedro Domingos, Professor and author of book:

 "The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World" • Confidentiality, Integrity, Availability (CIA)

> + authenticity, accountability, nonrepudiation, reliability

• DAD - Disclosure, Alteration Destruction

SQL Injection on car license plates

The Problem

- Number of security breaches is rapidly increasing
- Organizations are not able to cope with all of threats, attacks and risks any more:
 - significant amount of manual work
 - lack of focus and concentration leading to errors
 - lack of skilled professionals and tools
 - increasing cost
- There is no true predictive approach on the market!
- Late detection costs of breach are skyrocketing!

Data Application Predictive Host Proactive Reactive Internal Network Perimeter Past Present • Future Physical Policies, Procedures, **Awareness**

Defense in Depth Layers

Our Approach

- INPRESEC's INTELLIGENT PREDICTIVE SECURITY
 - Artificial Intelligence Machine Learning Predictive Analytics Big Data Threat Intelligence BETTER INFORMATION SECURITY
 - CHALLENGES WE ARE ADDRESSING
 - Classification

Prediction

Machine Learning

- Supervised
- Unsupervised
- Reinforcement Learning

 Principal Component Analysis (PCA)

Source: http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

Machine Learning Tools

- Keras: The Python Deep Learning library
 - TensorFlow An open-source software library for Machine Intelligence
 - Theano Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently.
- scikit-learn Machine Learning in Python
- Matlab Statistics and Machine Learning Toolbox
- Weka Collection of machine learning algorithms for data mining tasks.
- NeuroSolutions Neural Network Software
- Apache Mahout[™] Scalable machine learning and data mining
- Appache Spark[™] Machine Learning Library (MLlib) scalable machine learning library consisting of common learning algorithms and utilities, including classification, regression, clustering, collaborative filtering, dimensionality reduction, as well as underlying optimization primitives

Our Solution

Integrated and automated workflow – learning in the lab and production

- **Classification of events** ALLOWED/NOT ALLOWED Action based on the result
- Common Platform & modules for:
 - Intrusion
 - Data Leak
 - Fraud
 - Malware
 - Malfunction
 - ...

Prediction

- Solution components: Sensor, Agent, Server, Admin, Trainer, Prediction Module
- Deployment:
 - Service model: Security as an INPRESEC hosted and managed service
 - Product model: hosted by client, serviced by us

Key INPRESEC Solution Elements

Patent applications in progress

INPRESEC SENSOR

Software, can be appliance analyses network traffic & possible security violations, classification based on Machine Learning (ML) - network-based system

INPRESEC SERVER

- Software integrates functions of sensors & agents
- Collects data from Sensors & Agents, analysis, classifying, learning & correlation and actions, based on ML
- Can be linked to SOC / CERT centers or to other security elements (AV, DLP, SIEM,...)

INPRESEC TRAINER

Software – training system based on ML

INPRESEC AGENT

 Software installed on a computer (server, desktop, laptop), mobile device (smart phone, tablet etc.) or network devices (routers, firewalls, etc.), classification based on ML – host based system

INPRESEC ADMIN

- Dashboard, Configuration Console, Management, Monitoring & Reporting Tools.
- Sends alerts or other info through various communication means

INPRESEC PREDICTION MODULE

- Software data feed with probabilities of security events in future,
- Prediction based on various data sources, Threat Intelligence (TI), predictive analytics and ML

Solution Components - Sensor

SENSOR, AGENT, SERVER, ADMIN, TRAINER, PREDICTION MODULE

 Software, can be appliance analyses network traffic & possible security violations, classification based on Machine Learning (ML) network-based system

Ą

Solution Components - Agent

Sensor, <u>Agent</u>, Trainer Server, Admin, Trainer, Prediction Module

 Software installed on a computer (server, desktop, laptop), mobile device (smart phone, tablet etc.) or network devices (routers, firewalls, etc.), classification based on ML – host based system

INPRESE	C Agent
Processes	System Calls
Critical System Structures	Log Files
Network Activity	

Solution Components – Server and Admin

Sensor, Agent, Trainer Server, Admin, Trainer, Prediction Module

- Software integrates functions of sensors & agents
 - Collects data from Sensors & Agents, analysis, classifying, learning & correlation and actions, based on ML
 - Can be linked to SOC / CERT centers or to other security elements (AV, DLP, SIEM,...)

SENSOR, AGENT,

Server, <u>Admin</u>, Trainer, Prediction Module

- Software Dashboard, Configuration Console, Management, Monitoring & Reporting Tools.
 - Sends alerts or other info through various communication means

Solution Components – Trainer and Prediction Module

SENSOR, AGENT, SERVER, ADMIN,

- **TRAINER**, PREDICTION MODULE
- **Software** training system based on ML
 - Uses "security analyst in the loop" annotations as additional input to datasets
 - Creates new models based on inputs from live system and annotated vectors
 - When new model with better accuracy is created, posts it to server for download by sensors and agents
 - By machine learning, system provides continual improvement adapting to variety of threats, attacks, as well as specific requirements that customers may have.

Sensor, Agent, Server, Admin, TRAINER, **PREDICTION MODULE**

- Software data feed with probabilities of security events in future,
 - Prediction based on various data sources, Threat Intelligence (TI), predictive analytics and ML
 - Using various parameters and input data from set of internal and external sources, it analyses them and, through set of our proprietary algorithms, gives probabilities of possible threats and attacks.
 - These data will be later distributed as input to our system and help to set alert levels, thresholds, prevention measures etc.

Å

Possible Network Layout

Machine Learning -> Increased Efficiency

- "Security analyst in the loop" concept
 - Supervised learning solution becomes more and more clever during time and requires less human intervention
- Decrease grey area during time, eventually to reach A = B
- Team focuses and more innovative and interesting work

Datasets – how to obtain/create

- Various IDS/IPS data sets and test vectors available on Internet
- Created by us from:
 - Testing environments
 - Real environments
- Created by us dataset generation scripts:
 - "clean" ones i.e. regular, no intrusions or other issues
 - With anomalies, attack, intrusions, data leaks, malware and similar malfunctions

Labeled dataset example (redacted)

A In	В	С	D	E	F	G	н	1	J	K	L	M	N	0	P	0	2	R	S	T	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ A	AK	AL	AM	AN	AO	AP	QA	AR	AS	A	T A	AV AV
1 FiL																																																
2 2	0.00073	1.4E+09	11	37109	-1	-1	5357	-1	-1		0	0	-1	0	-1	0	64	128	7	4	3	1039	320	719 7	912087	2637363	5274725	0	0	0	0	0	0	8241.76	4120.88 27	747.25	5	6	29312	66560	2.8E+09	9 4.2E+0	J9 0.000/	45 2.1E	E-05 0.000	043	80 23	9.667 anomaly
3 2	0.14077	1.4E+09	11	36771	-1	-1	-1	-1	443		0	0	-1	0	-1	0	64	50	10	5	5	914	325	589	41599.5	14775.8	26823.7	0	0	0	0	0	0	63.9336	28.4149 28	8.4149	5	13	40832	16896	1.8E+08	B 1E+0	09 0.1113	32 0.1	113 1.6E-	-05	65	117.8 normal
4 2	0	1.4E+09	11	27170	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	215	-1	1	1	0	62	62	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	32	-1	9.2E+08	8	-1	0	0	0	62	0 anomaly
5 3	0	1.4E+09	5	-1	-1	-1	-1	-1	-1	19	92	-1	-1	6	-1	-1	1	-1	1	1	0	46	46	0	0	0	0	0	0	0	0	-1	-1	0	0	0	5	7	-1	-1	-1	1	-1	0	0	0	46	0 normal
6 2	0.08838	1.4E+09	11	43149	-1	-1	-1	-1	591		0	0	-1	0	-1	0	64	63	5	2	3	987	633	354	50059.4	28695.9	21363.5	0	0	0	0	0	0	45.2617	11.3154 22	2.6308	5	3 2	88896	32512	4E+05	9 2.2E+0	J9 0.000°	15 0.000	014 1.2E	-05 3	16.5	118 normal
7 2	2.46421	1.4E+09	4	-1	8	-1	-1	16896	-1		0	-1	-1	0	-1	-1	254	-1	3	3	0	222	222	0	480.479	480.479	0	0	0	0	0	-1	-1	0.81162	0.81162	0	5	4	-1	-1	-1	1	-1	0	0	0	74	0 anomaly
8 2	3.68369	1.4E+09	4	-1	8	-1	-1	16896	-1		0	-1	-1	0	-1	-1	54	-1	4	4	0	296	296	0	482.125	482.125	0	0	0	0	0	-1	-1	0.8144	0.8144	0	5	4	-1	-1	-1	1	-1	0	0	0	74	0 anomaly
9 2	0.88162	1.4E+09	11	60547	-1	-1	-1	-1	80		0	0	-1	0	-1	0	64	250	85	43	42	60690	3359	57331	537619	29772.4	507846	0	0	0	0	0	0	95.279	47.6395 46	6.5052	5	6 1	38368	8176	1.4E+09	9 3.5E+0	J9 0.035 ^r	55 0.03	554 SE	-06 78.1	1163 13	65.02 normal
10 2	0.24486	1.4E+09	12	58508	-1	-1	3702	-1	-1		0	-1	-1	0	-1	-1	1	-1	2	2	0	2308	2308	0	37702.9	37702.9	0	0	0	0	0	-1	-1	4.08393	4.08393	0	5	7	-1	-1	-1	1	-1	0	0	0 1	1154	0 normal
11 2	0	1.4E+09	11	11591	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	221	-1	1	1	0	78	78	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	0	-1	6.8E+08	8	-1	0	0	0	78	0 anomaly
12 2	0	1.4E+09	11	28320	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	17	-1	1	1	0	78	78	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	0	-1	8.4E+08	в	-1	0	0	0	78	0 anomaly
13 2		1.4E+09	11	32246	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	138	-1	1	1	0	74	74	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	0	-1	9.5E+08	8	-1	0	0	0	74	0 anomaly
14 2	0	1.4E+09		27373	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	213	-1	1	1	0	78	78	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	0	-1	2E+05	9	-1	0	0	0	78	0 anomaly
15 2		1.4E+09		29997	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	109	-1	1	1	0	74	74	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	0	-1	1.6E+05		-1	0	0	0	74	0 anomaly
16 1		1.5E+09	7	-1	195	-1	-1	13	-1		-1	-1	-1	-1	-1	-1	-1	-1	1	1	0	66	66	0	0	0	0	0	0	0	0	-1	-1	0	0	0	5	7	-1	-1	-1	1	-1	0	0	0	66	0 normal
17 2	1.1E-05		11	63784	-1	-1	10252	-1	-1		0	0	-1	0	-1	0	64	128	2	1	1	116	62	54	0	0	0	0	0	0	0	0	0	90909.1	0	0	5	13	4096	0	3.6E+08	8	-1	0	0	0	62	54 anomaly
18 2	0	1.4E+09	11	16084	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	77	-1	1	1	0	62	62	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	0	-1	1.8E+09	9	-1	0	0	0	62	0 anomaly
19 2	3.3E-05			35978	-1	-1	9725	-1	-1		0	0	-1	0	-1	0	53	128	2	1	1	114	60	54	0	0	0	0	0	0	0	0	0	30303	0	0	5	13	1024		1.1E+09		-1	0	0	0	60	54 anomaly
20 2	2E-06			47808	-1	-1	1751	-1	-1		0	0	-1	0	-1	0	64	64	2	1	1	128	74	54	0	0	0	0	0	0	0	0	0	500000	0	0	5		37600		3.7E+08		-1	0	0	0	74	54 anomaly
21 2		1.5E+09		60909	-1	-1	7937	-1	-1		0	-1	-1	0	-1	-1	64	-1	1	1	0	74	74	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	0		8.1E+08		-1	0	0	0	74	0 anomaly
22 2		1.4E+09		10451	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	138	-1	1	1	0	74	74	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	0		1.2E+09		-1	0	0	0	74	0 anomaly
23 2		1.4E+09		28071	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	49	-1	1	1	0	62	62	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	0		6.2E+08		-1	0	0	0	62	0 anomaly
24 1		1.4E+09	7	-1	92	-1	-1	45	-1		-1	-1	-1	-1	-1	-1	-1	-1	1	1	0	66	66	0	0	0	0	0	0	0	0	-1	-1	0	0	0	5	7	-1	-1	-1	1	-1	0	0	0	66	0 normal
25 2		1.5E+09	11	57647	-1	-1	1175	-1	-1		0	-1	-1	0	-1	-1	64	-1	1	1	0	74	74	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	0	-1	3.9E+09	9	-1	0	0	0	74	0 anomaly
26 2		1.4E+09		32126	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	187	-1	1	1	0	78	78	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	0	-1	1.2E+05	9	-1	0	0	0	78	0 anomaly
27 1		1.5E+09	7	-1	26	-1	-1	41	-1		-1	-1	-1	-1	-1	-1	-1	-1	1	1	0	90	90	0	0	0	0	0	0	0	0	-1	-1	0	0	0	5	7	-1	-1	-1	1	4	0	0	0	90	0 normal
28 2	3.79801		4	-1	8	-1	-1	16896	-1		0	-1	-1	0	-1	-1	234	-1	4	4	0	296	296	0	467 613	467.613	0	0	0	0	0	-1	-1	0.78989	0.78989	0	5	4	-1	-1	-1	1	-1	0	0	0	74	0 anomaly
	1.22888		12	-1	-1	2049	1900	-1	-1		0	-1	-1	0	-1	-1	4	-1	13	13	0	4598	4598		27634.9		0	0	0	0	0	-1	-1	9.765	9.765	0	5	11	-1	-1	-1	1	-1	0	0	0 353	692	0 normal
	4.5358		11	48455	-1	-1	-1	-1	80		0	0	-1	0	-1	0	64	56	4	2	2	252	132	120	222.232	116 407	105.825	0	0	0	0	0	0	0.6614	0.22047 0.	22047	5	13 1	84832	46848	3.3E+09	9 4 3E+0	0 0 0 0 3 3 3	34 0.033	332 1.8E-		66	60 normal
	0.12742		11		-1	-1	-1	-1	591		0	0	-1	0	-1	0	64	63	7	4	3	1890	810					0	0	0	0	0			23.5436 1		5	3	32128	6912	1.3E+08	8 2 1E+0	0.000	92 0.00	092 2F	-06 2	02.5	360 normal
	3.67584		4	-1	8	-1	-1	16896	-1		0	-1	-1	0	-1	-1	58	-1	4	4	0	296	296	0	483.155	483.155	0	0	0	0	0	-1		0.81614		0	5	4	-1	-1	-1	1	-1	0	0	0	74	0 anomaly
33 2		1.4E+09	11	29984	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	228	-1	1	1	0	74	74	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	32768	-1	6E+08	8	-1	0	0	0	74	0 anomaly
34 2	2.45784		4	-1	8	-1	-1	16896	-1		0	-1	-1	0	-1	-1	222	-1	3	3	0	222	222	0	481.724	481.724	0	0	0	0	0	-1	-1	0.81372	0.81372	0	5	4	-1	-1	-1	1	-1	0	0	0	74	0 anomaly
35 2		1.4E+09		13530	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	159	-1	1	1	0	62	62	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	8192	-1	1.8E+05	9	-1	0	0	0	62	0 anomaly
36 2		1.4E+09	2	-1	-1	-1	-1	-1	-1		-1	-1	-1	-1	-1	-1	-1	-1	1	1	0	60	60	0	0	0	0	0	0	0	0	-1	-1	0	0	0	6	7	-1	-1	-1	1	-1	0	0	0	60	0 normal
37 1	4.02639		7	-1	-1	-2	-1	-1	-2		-1	-1	-1	-1	-1	-1	-1	-1	3	3	0	180	180	0	238.427	238.427	0	0	0	0	0	-1	-1	0.49672	0.49672	0	5	11	-1	-1	-1	1	-1	0	0	0	60	0 normal
	0.01133		12	47889	-1	-1	-1	-1	53		0	0	-1	0	-1	0	64	60	2	1	1	264	85	179	0	0	0	0	0	0	0	-1	-1	88.269	0	0	4	3	-1	-1	-1	1	-1	0	0	0	85	179 normal
39 2		1.4E+09		20254	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	165	-1	1	1	0	74	74	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	0	-1	1.7E+09	9	-1	0	0	0	74	0 anomaly
40 2		1.4E+09		14173	-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	111	-1	1	1	Ő	62	62	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	32		1.1E+09		-1	0	0	0	62	0 anomaly
41 2	1.22892		12	-1	-1	2049	1900	-1	-1		0	-1	-1	0	-1	-1	4	-1	13	13	0	4598	4598	0	27634	27634	0	0	0	0	0	-1	-1	9.76466	9.76466	0	5	11	-1	-1	-1	1	-1	0	0	0 353		0 normal
	0.00078			50673	-1	-1	-1	-1	591		0	0	-1	0	-1	0	128	63	2	1	1	121	55	66	0	0	0	1	1	0 3	3 3333	0	0	1283.7	0	0	5	3	65536	7296	3.8E+08	8 1.2F+0	0.000	43 0.00	035 7.7F	-05	55	66 normal
43 2		1.4E+09	6	135	-1	-1	0	-1	-1		0	-1	-1	0	-1	-1	255	-1	1	1	0	86	86	0	0	0	0	0	0	0	0	-1	-1	0	0	0	5	8	-1	-1	-1	1	-1	0	0	0	86	0 normal
44 2	2.7E-05		-	33608	-1	-1	2007	-1	-1		0	0	-1	0	-1	0	64	128	2	1	1	128	74	54	0	0	0	õ	0	0	0	0	0	37037	0	0	5	13	1152	-1	7.2E+08	R	-1	0	0	0	74	54 anomaly
	0.11683			45691	-1	-1	-1	-1	80		0	0	-1	0	-1	0	64	52	3	2	1	214	140	74	4793.45	4793.45	0	0	0	0	0	0	0	17.1195	8 55974	0	5		29312		9.3E+08		09 0.1168	83 0.11	681 1 25	-05	70	74 normal
45 2		1.4E+09		10188	-1	-1	-1	-4	80		0	-1	-1	0	-1	-1	43	-1	1	1	0	62	62	0	0	47.33.43	0	0	0	0	0	0	0	0	0.000/4	0	5	11	0		5.8E+08		-1	0	0	0	62	0 anomaly
47 2	0		11		-1	-1	-1	-1	80		0	-1	-1	0	-1	-1	201	-1	1	1	0	62	62	0	0	0	0	0	0	0	0	0	0	0	0	0	5	11	0		3.8E+08		1	0	0	0	62	0 anomaly
-/ 2	U	1.46109		19913	-4	-1	-1	-1	80		0	-4	14	v	14	-4	201	-4	4	+	0	-02	82	0	U	0	U	U	0	0	0	0	0	U	0	0	3		0	-1	3.85108	9		0	0	0	04	o anomaly

Sensitivity and Specificity

Receiver Operating Characteristic (ROC) curve

Comparison with traditional systems

• **Paradigm shift**: predicts, prevent, prepare - goes ahead of hackers.

- Multilayer / multilevel, assures holistic approach.
 - Detects: wide spectra of threats and attacks intrusions, data leak, malware, fraud and other malfunctions.

One more thing:

 While the role of ML and Al in cybersecurity is certainly in the early stages and still needs to evolve, hackers will quickly learn to turn machine learning into a distinct advantage

=> AI & ML can be misused as new threat attack vector

THANK YOU, QUESTIONS

/www.linkedin.com/in/draganpleskor

Contact:

Dragan Pleskonjic, INPRESEC Initiator and Founder

- E-mail: <u>dragan@conwex.org</u> or <u>dragan@inpresec.com</u>
- Twitter: <u>@DPleskonjic</u>
- Personal web site: www.dragan-pleskonjic.com
- LinkedIn profile: